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Abstract. A theory of excitons in quantum wells based on the Bethdalpeter equation is 
presented. The energy gap shift, polaroniceffective masses of electrons and holes as well as 
the ground-state exciton binding energy have been calculated as functions of the layer 
thickness. In the limit of thin layers the interaction of excitons with LO phonons is found to 
cause a decrease in the exciton binding energy of  the order of 18%. 

1. Introduction 

Because of the technological development of molecular beam epitaxy that has made it 
possible to grow high-quality heterojunctions and superlattices, great interest in the 
electronic properties of the quasi-two-dimensional electron gas has occurred. It is 
expected that in suchsystems the confinement of electrons between two parallel potential 
barriers is responsible for many new physical properties and effects with practical 
importance in the fabrication of new devices. The usual materials for the above-men- 
tioned structures are the weakly ionic 111-V compounds such as GaAs-Ga,-,Al& 
heterostructures. For these materials the interaction with optical phonons dominates; 
so the effects of electron-Lo-phonon coupling must be taken into account in the 
description of optical properties. 

Turning our attention to the theoretical situation, we find that two fundamental 
different models have been used to describe excitons in quantum wells. The first is based 
on the usual bulk Frohlich model (Das Sarma and Madhukar 1980, Das Sarma 1983, 
Deganiand Hipolito 1987, Matsuura 1987). Accordingto theFrohlichmodelthe electron 
and hole that constitute the exciton are well separated, and therefore interact indi- 
vidually with rophonons. Thesecond model is basedon the assumption that LO phonons 
are confined to the layer (Trallero Gines and Comas 1988, Rudin and Reinecke 1990). 
The last assumption leads to the fundamental differences between the electron-phonon 
interaction in heterostructures and the Frohlich model, since the z component of the 
phonon wavevector has a discrete nature. One important consequence of the second 
approach is that, in the limit, when the well thickness L + 0 the polaronic energy shift 
and polaronic mass corrections for weak-coupling polarons tend to zero, while the 
Frohlich model predicts the correct results for the energy shift and for the mass cor- 
rections not only in the three-dimensional (30) bulk case but also in the two-dimensional 
(ZD) case as well (Guseinov and Seid-Rzaeva 1989). In the present work we shall assume. 
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only a perfect confinement of electrons and holes in the well, since the condition 
for completely confined LO phonons is questionable considering the small difference 
between the lattice constants of the materials in the heterostructures. 

Strictly speaking, the above two approaches are not entirely correct pictures, since 
the more detailed theory has to be based on the assumption that well defined elementary 
excitations (polaritons) formed by coupling of excitons, phonons and photons exist in 
quantum wells. In the bulk case the corresponding theory has already been proposed 
(Koinov 1990). According to this theory the energy spectrum of excitons in quantum 
wells manifests itself as poles in the frequency plane of the exciton Green function and, 
therefore, they can be obtained by meansof thecorresponding Bethe-salpeter equation. 
This equation has the same form as in the bulk case, but in the quantum wells the 
following additional difficulties occur. 

(i) The symmetry is broken in the z direction. 
(ii) The electrons and holes are confined in the quantum wells. 
(iii)The formsofthe photonandphonon Green functionsinquantum wellsaremore 

complicated than in the bulk case owing to the different lattice and dielectric constants 
of the layers. 

The above-mentioned peculiarities lead to serious difficulties in any attempt to 
formulate a detailed theory of excitons in quantum wells which result from the different 
lattice and dielectric constants of the layers. In what follows we have neglected these 
effects because of the nearly equal lattice and dielectric constants of GaAs and 
Ga I - fiI,As. 

The paper is organized as follows. In section 2 an effective Bethe-Salpeter equation 
for the exciton wavefunction is derived. Using this equation the energy gap shift and the 
polaroniceffective masses are calculated in section 3. In section 4 the effective electron- 
hole interaction in a quantum well is derived and using a variational method the ground- 
state energy of excitons in quantum wells for different thicknesses is calculated. 

2. Bound-state equation 

We are interested in the eigenvalues and corresponding wavefunctions of the Wannier 
excitons in quantum wells made from direct-gap semiconductors with non-degenerate 
and isotropic bands. With the perfect-confinement approximation for electrons and 
holes the exciton wavefunction can be written as 

where 

In the aboveequations, n denotes the nth eigenstate of the exciton withm wavevector 
Q in the quantum well with a thickness L; p = (x,,ys, 0) - (Xht Yh, 0) where re = (x,, y e ,  
z.) and rh = (xh, yh, zh) are the coordinates of electrons and holes; I , ,  p = 1,2, . I . denote 
the quantum number of the states in the infinitely deep wells, As was mentioned above, 
the exciton spectra "(Q) can be obtained by searching for the poles of the two-particle 
electron-hole Green function in the complex energy plane. A suitable algorithm for 
locating these poles by reducing the Bethe-Salpeter integral equation for the exciton- 
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four-time-variable Green function to an effective eigenvalue equation has been pro- 
posed in a previous paper (Koinov 1990). Taking into account the broken symmetry 
on the z direction and following the above-mentioned algorithm, one can obtain the 
following equation for the binding energy of the exciton E.(Q) = E, - hw,(Q): 

where @$(k)  is the Fourier transform of @;,?(p). In equation (2) we have introduced 
the following notation: 

E,(k,A) = hzk2/2m, + hZx2A2/2m,L2 

E, (k ,A)  = f i2kz/2m, + h2n2A2/2m,L2. 

( 3 4  

(36) 

Equation (2) is our effective Bethesalpeter equation for the exciton wavefunction 
@ ; f ( k ) ,  The self-energy corrections F and 2" as well as the effective potential I,, are 
defined as follows: 
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where &,and 
is the longitudinal optical phonon frequency. The function Fne,,~ is defined as follows: 

Fap,s(Llpl) =I" dzi J"dZ2 exp(- lp~~zt  - z21)e,n(Z1)Q)~(Z2)e,~(Z2)a)5(zI). 

3. Band-gap renormalization and polaron eflective masses 

It is well known that owing to the interaction between the particles (electrons and holes) 
and theionsanextramass Am,,. = m t .  - mS," arisesand,therefore,thepolaroneffects 
make the particle appear to be heavier than the band masses. The simplest way to obtain 
polaron effective masses of electrons and holes is to neglect the excitonic effects. In this 
case, one should assume the effective potential Icff to be equal to zero, so that the Bethe- 
Salpeter equation (2) is reduced to an equation for the electron-hole pair formed by A 
and p subbands. As can be seen from equation (Z), the interaction with phonons causes 
a subband mixing, i.e. the energy of the (A, p)-electron-hole pair depends not only on 
the subbands E,(k, A) and E,(k, v )  but also on the rest of the subbands. In the lowest- 
order approximation we neglect the mixing between subbands by taking Zfp5 and X i r o  
in equation (2) to be equal to zero. In this approximation, one can write for the energy 
of electron-hole pair, formed by the lowest conduction (A = 1) and valence (p  = 1) 
subbands, 
Efih(k) = E:' + h2k2/2m, + h2k2/2m, + Z f l  (k, Q = 0, EKh) 

where we have introduced an effective band gap E f f  = E ,  + E t  + E ; ;  

the corresponding polaronic masses by expanding ZcI and Z;, in a power series in k. 
Thus, we obtain the following equation for AE@ 

are the optical and static dielectric constants, E * - !  = e;' - -l andwo 

(7) 
0 0 

+ ET1 (k, Q = 0, EZh) (8) 

ES.' - - h2s' /Zm,, ,LZ.  From equation (S), one can derive the energy gap shift AEg and 

Here the electron and hole polaron radii rep and r; and the electron-phonon and h o l e  
phonon coupling constants cu, and LY, are defined as usual: IC;' = (h/Zmc.vwu)V2; 
eC," = (m,.,e4/2h"o&*2)'/2, and the following functions are introduced: 

FllIl(z) = (32' + Snz)/z(z' + 4n2) - 32n4[l - exp(-z)]/z2(zz + 4a2)* 
FIAlA(Z) = 2r[Z* + d ( A 2  + l)]/[z' + nyl - l)Z][Z' + i ( A  + 1)2] 

( 1 0 4  

The polaronic effective masses for the 1 = 1 and p = 1 subbands are found to be 

)-I. (11) 
z'F~AIA (zL/r>") 

[ z2  + 1 + AE8/hwo + x2(A2 - l)(ry/L)2]3 
- = (1 - 2a,,, 4, 2 l d z  
mc.v A =  1.2. .., 

In the limit L+ 0 the following two equations hold: 

(AE,/hwu) = (a, + ~ , ) ~ / 2 ( 1  + A E g / h ~ o ) 1 / 2  

m:,,/m,,, = [I - ~ a ~ , ~ / 8 ( 1  + A E , / h w ~ ) l / ~ ] - ~ .  
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Figure 1. Calculated energy gap shift of a GaAs 
(m, = 0.067m0; m, = 0.197~1"; e, = 0.0681; = 
0.092; hw, = 35.2 meV) quantum well as a func- 
tion of the quanlum-well thickness (-): ---, 
obtained by neglecting AEJfiw. in lhe right-hand 
side of equation (9). 

Figure 2. Calculated percentage extra masses of 
electrons (curve A) and holes (curve B) of a GaAs 
(m, = 0.067m.; m, = 0.197m0; 01. - 0.0661; OL. = 
0.092: A u k  = 35.2 meV) quantum well as a func- 
lion of the quantum-well thickness. 

The conventional ZD polaron corrections AEg and m:. can be obtained from the above 
equations by neglecting AE$hw, in their right-hand sides. 

Using equations (9)-(I 1) we have calculated the energy shift AEg and the percentage 
polaronic extra masses Amc,v/mc,v = (m&/m,,, - I)% for heavy-hole excitons in 
GaAs-Ga,_,Al,As. The values of the physical relevant parameters that we have used 
are m, = 0.067mo, m, = 0.197mo, a; = 0.0681, CY" = 0.092 and hwo = 35.2 meV (Bmm 
and Bastard 1985). Figures 1 and 2 show the results we have obtained for the energy gap 
shift AEg and for the percentage extra masses which are plotted as functions of the layer 
thickness. In the paper by Mori et a1 (1988), Am,/m, was found to be about 13% 
(m: = 0.076m0) for L = 100 A. As can be seen from figure 2 our extra mass correction 
is too small to achieve agreement between theory and experiment. The discrepancies 
between calculated and measured masses are probably due to the non-parabolic charac- 
teristic of electron band. 

4. Effective electron-hole interaction in a quantum well 

In section 2 we have obtained an exact state equation where the effective potential I,, 
depends on k andp separately and is therefore non-local. We now transform the wave 
equation (2) to coordinate space. The r-space wavefunction Y"Q(p, z , ,  zh) is defined 
by equation (1) and the eigenstate equation becomes 

x Y"Q(p', z ; ,  Z L )  



(14) 

exPl-IP-kllz: -GI1 
fiwo + E. (Q)  + Ec(k + Q, A) + E,(P, P )  

+ 

One can solve equation (12) by expanding the exciton wavefunction into a basis 
R,,,(p) of the radial functions of a 2D hydrogen atom system (Shinada and Sugano 1966) 
and diagonalizing the corresponding Hamiltonian matrix. For simplicity we assume 
the total 2~ momentum of the exciton to be equal to zero (Q = 0). In this case the 
wavefunction Y ( p ,  z, ,  z h )  of the lowest exciton state with binding energy Eo = AEg - 
E.=& = 0) can be written in the form 

where C,,,(A, p) satisfies the following equation: 

(16) 
Here is the energy of the ZD system, n = 0, 1 , 2 ,  . . . is the principal quantum 

numberand,foragivenn, theangularmomentumquantumnumberm = 0, +I ,  2 2 , .  . . 
and R,,,(k) is the Fourier transform of Re.&). 
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Figure 3. Heavy-hole ground-state exciton bind- 
ing energy as a function of the GaAs (m, = 
0.067m,,; m, = 0.197mo; E. = 10.9; = 12.5; 
fiw. = 35.2 meV) quantum-well thickness: 0, 
experimental rsults (Rogers erull986); A ,  data 
from the work of Maan erd(1984); U. data from 
the work ofTarucha eral(1984). 

Our cxt aim is to find out how the bindir energy depends upon the parameters R,/ 
hue, M ‘p* ,  &,/EO and L/rp where R, = I e‘/2E:h2 and rp = (h/Zp*o# are the 
exciton ydberg and polaronic radius, respectively. To do this, we take into account 
only the diagonal terms in the Hamiltonian matrix and then use the variational method 
with a wavefunction 

R d P )  = ( P 2 / 2 4 ’ 4  exP(-PP/2). (17) 
The parameter p can be determined by maximizing the binding energy EB with 

respect top.  For the case when the exciton binding energy is small in comparison with 
the phonon energy, we can replace the last non-local term in equation (16) by a local 
term, which has the form 

Thus, we obtain the following equation for the excition binding energy: 

We have numerically maximized the energy expression (19) for the different values 
of the layer thickness L of the GaAs quantum wells. The values of the physical relevant 
parametersare the same asinsection3. Figure3shows the resultsthat wehaveobtained. 
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One can see that our results are in good agreement with the experimental values (Maan 
et al1984, Tarucha er a1 1984, Rogers et a1 1986). The discrepancy between calculated 
and measured binding energies can be made smaller if one takes into account off- 
diagonal terms in Hamiltonian matrix in equation (16). 

5. Conclusion 

Our variational calculations for the energy gap shift, extra polaronic masses and binding 
energies of excitons in quantum wells show that they decrease monotonically with 
increasing well thickness. The theory presented above is based on several assumptions 
which we believe do not affect the essential features of the results. 

In our paper we have developed a method based on the Bethesalpeter equation for 
answering the question which naturally arises in the theory of excitons in quantum wells 
as to whether the polaronic corrections are important, mainly in the limit of thin layers. 
According to our calculations, we derived polaronic corrections to the exciton binding 
energy of about 18%. 
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